Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 195: 108057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471598

RESUMO

Previous efforts to reconstruct evolutionary history of Palearctic ground squirrels within the genus Spermophilus have primarily relied on a single mitochondrial marker for phylogenetic data. In this study, we present the first phylogeny with comprehensive taxon sampling of Spermophilus via a conventional multilocus approach utilizing five mitochondrial and five nuclear markers. Through application of the multispecies coalescent model, we constructed a species tree revealing four distinct clades that diverged during the Late Miocene. These clades are 1) S. alaschanicus and S. dauricus from East Asia; 2) S. musicus and S. pygmaeus from East Europe and northwestern Central Asia; 3) the subgenus Colobotis found across Central Asia and its adjacent regions and encompassing S. brevicauda, S. erythrogenys, S. fulvus, S. major, S. pallidicauda, S. ralli, S. relictus, S. selevini, and S. vorontsovi sp. nov.; and 4) a Central/Eastern Europe and Asia Minor clade comprising S. citellus, S. taurensis, S. xanthoprymnus, S. suslicus, and S. odessanus. The latter clade lacked strong support owing to uncertainty of taxonomic placement of S. odessanus and S. suslicus. Resolving relationships within the subgenus Colobotis, which radiated rapidly, remains challenging likely because of incomplete lineage sorting and introgressive hybridization. Most of modern Spermophilus species diversified during the Early-Middle Pleistocene (2.2-1.0 million years ago). We propose a revised taxonomic classification for the genus Spermophilus by recognizing 18 species including a newly identified one (S. vorontsovi sp. nov.), which is found only in a limited area in the southeast of West Siberia. Employing genome-wide single-nucleotide polymorphism genotyping, we substantiated the role of the Ob River as a major barrier ensuring robust isolation of this taxon from S. erythrogenys. Despite its inherent limitations, the traditional multilocus approach remains a valuable tool for resolving relationships and can provide important insights into otherwise poorly understood groups. It is imperative to recognize that additional efforts are needed to definitively determine phylogenetic relationships between certain species of Palearctic ground squirrels.


Assuntos
Introgressão Genética , Sciuridae , Animais , Sibéria , Filogenia , Sciuridae/genética , Ásia
2.
Microorganisms ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557762

RESUMO

Protein P66 is one of the crucial virulence factors of Borrelia, inducing the production of specific antibodies in patients with ixodid tick-borne borreliosis (ITBB). Various species of Borrelia are characterized by genetic variability of the surface-exposed loop of P66. However, little is known about this variability in Borrelia bavariensis. Here we describe the variability of the nucleotide sequences of P66 gene locus in isolates of B. bavariensis. Analysis of nucleotide sequences of P66 in 27 isolates of B. bavariensis from ITBB patients revealed three allelic variants of this gene. The alignment score of amino acid sequences in the isolates showed amino acid replacements in various positions confirming the presence of three allelic variants. Two of them are characteristic only for some isolates of B. bavariensis of the Eurasian gene pool from various parts of the geographic ranges of B. bavariensis from various samples. At least three allelic variants of P66 B. bavariensis have been identified, which have different amino acid expression, occur with different frequency in ITBB patients and, presumably, can have different effects on the course of the infection.

3.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282180

RESUMO

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Dessecação , Congelamento , Saccharomyces cerevisiae , Esporos Bacterianos/efeitos da radiação , Radiação Ionizante , Poliploidia
4.
mBio ; 13(1): e0339421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012337

RESUMO

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Assuntos
Antioxidantes , Deinococcus , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Manganês/metabolismo , Superóxidos/metabolismo , Superóxido Dismutase/metabolismo , Envelhecimento
5.
RNA Biol ; 18(sup2): 804-817, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793288

RESUMO

Nsp1 of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of the Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1, eRF1 and ABCE1. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates peptide release and formation of termination complexes. Detailed analysis of Nsp1 activity during translation termination stages reveals that Nsp1 facilitates stop codon recognition. We demonstrate that Nsp1 stimulation targets eRF1 and does not affect eRF3. Moreover, Nsp1 increases amount of the termination complexes at all three stop codons. The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that the biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and remove them from the pool of the active ribosomes.


Assuntos
Biossíntese de Proteínas , SARS-CoV-2 , Proteínas não Estruturais Virais/fisiologia , Animais , Sistema Livre de Células , Códon de Terminação/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Mutação , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Coelhos , Ribossomos/metabolismo
6.
PeerJ ; 9: e10759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520475

RESUMO

The Tianshan birch mouse Sicista tianschanica is an endemic of the Central Asian mountains and has previously been shown to include several karyomorphs ("Terskey", "Talgar", "Dzungar"); however, the taxonomic status of these forms has remained uncertain. We examined the genetic variation in S. tianschanica based on historical DNA samples from museum collections, including the type series. Mitochondrial and nuclear data indicated that the species complex includes two major clades: Northern (N) and Southern (S) (cytb distance 13%). The N clade corresponds to the "Dzungar" karyomorph (Dzungar Alatau, Tarbagatay). The S clade is comprised of four lineages (S1-S4) divergent at 6-8%; the relationships among which are resolved incompletely. The S1 lineage is found in eastern Tianshan and corresponds to the nominal taxon. The S2 is distributed in central and northern Tianshan and corresponds to the "Terskey" karyomorph. The S3 is restricted to Trans-Ili Alatau and belongs to the "Talgar" karyomorph. The S4 is represented by a single specimen from southeastern Dzungar Alatau with "Talgar" karyotype. No interlineage gene flow was revealed. The validity of S. zhetysuica (equivalent to the N clade) is supported. Based on genetic and karyotypic evidence, lineages S2 and S3 are described as distinct species. The status of the S4 requires further investigation.

7.
Vaccines (Basel) ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514059

RESUMO

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80-100% protection.

8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171937

RESUMO

Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HCT116 , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
9.
PLoS One ; 15(1): e0228006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999745

RESUMO

A concerted action on the part of international agencies and national governments has resulted in the near-eradication of poliomyelitis. However, both the oral polio vaccine (OPV) and the inactivated polio vaccine (IPV) have deficiencies which make them suboptimal for use after global eradication. OPV is composed of attenuated Sabin strains and stimulates robust immunity, but may revert to neurovirulent forms in the intestine which can be shed and infect susceptible contacts. The majority of IPV products are manufactured using pathogenic strains inactivated with formalin. Upon eradication, the production of large quantities of pathogenic virus will present an increased biosecurity hazard. A logical ideal endgame vaccine would be an inactivated form of an attenuated strain that could afford protective immunity while safely producing larger numbers of doses per unit of virus stock than current vaccines. We report here the development of an ionizing radiation (IR)-inactivated Sabin-based vaccine using a reconstituted Mn-decapeptide (MDP) antioxidant complex derived from the radioresistant bacterium Deinococcus radiodurans. In bacteria, Mn2+-peptide antioxidants protect proteins from oxidative damage caused by extreme radiation exposure. Here we show for the first time, that MDP can protect immunogenic neutralizing epitopes in picornaviruses. MDP protects epitopes in Polio Virus 1 and 2 Sabin strains (PV1-S and PV2-S, respectively), but viral genomic RNA is not protected during supralethal irradiation. IR-inactivated Sabin viruses stimulated equivalent or improved neutralizing antibody responses in Wistar rats compared to the commercially used IPV products. Our approach reduces the biosecurity risk of the current PV vaccine production method by utilizing the Sabin strains instead of the wild type neurovirulent strains. Additionally, the IR-inactivation approach could provide a simpler, faster and less costly process for producing a more immunogenic IPV. Gamma-irradiation is a well-known method of virus inactivation and this vaccine approach could be adapted to any pathogen of interest.


Assuntos
Raios gama , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Genoma Viral , Células HeLa , Humanos , Estresse Oxidativo , Peptídeos/sangue , Poliovirus/genética , Poliovirus/imunologia , Poliovirus/patogenicidade , Poliovirus/ultraestrutura , Ratos Wistar , Proteínas Virais/metabolismo
10.
Sci Rep ; 9(1): 11361, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388021

RESUMO

Exposure to chronic ionizing radiation (CIR) from nuclear power plant accidents, acts of terrorism, and space exploration poses serious threats to humans. Fungi are a group of highly radiation-resistant eukaryotes, and an understanding of fungal CIR resistance mechanisms holds the prospect of protecting humans. We compared the abilities of 95 wild-type yeast and dimorphic fungal isolates, representing diverse Ascomycota and Basidiomycota, to resist exposure to five environmentally-relevant stressors: CIR (long-duration growth under 36 Gy/h) and acute (10 kGy/h) ionizing radiation (IR), heavy metals (chromium, mercury), elevated temperature (up to 50 °C), and low pH (2.3). To quantify associations between resistances to CIR and these other stressors, we used correlation analysis, logistic regression with multi-model inference, and customized machine learning. The results suggest that resistance to acute IR in fungi is not strongly correlated with the ability of a given fungal isolate to grow under CIR. Instead, the strongest predictors of CIR resistance in fungi were resistance to chromium (III) and to elevated temperature. These results suggest fundamental differences between the mechanisms of resistance to chronic and acute radiation. Convergent evolution towards radioresistance among genetically distinct groups of organisms is considered here.


Assuntos
Cromo/toxicidade , Farmacorresistência Fúngica , Fungos/fisiologia , Raios gama/efeitos adversos , Temperatura Alta/efeitos adversos , Estresse Fisiológico , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fungos/efeitos da radiação , Concentração de Íons de Hidrogênio , Mercúrio/toxicidade
11.
Methods ; 162-163: 54-59, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201933

RESUMO

Classical toeprinting is generally used to determine the position of ribosomes on mRNA; however, it has several disadvantages. We describe a fluorescent toeprinting assay that enables easier identification of ribosomal complexes bound to mRNA in vitro. The procedure involves the use of stable and safe fluorescently labeled oligonucleotides for reverse transcription reactions as primers, followed by the analysis of cDNA products using an automatic sequencer. This procedure allows the multiplexing and simultaneous analysis of a large number of samples. Over the past ten years, fluorescent toeprinting was applied to determine the activities of eukaryotic release factors and additional proteins involved in translation termination, to study the dynamics of translation initiation and elongation complexes, and to quantitatively evaluate the observed ribosomal complexes. Because of the simplicity and small amounts of material required, fluorescent toeprinting provides a highly scalable and versatile tool to study ribosomal complexes.


Assuntos
Bioensaio/métodos , Técnicas Genéticas , Ribossomos/metabolismo , Fluorescência , Células HeLa , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transcrição Reversa , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo
12.
Integr Zool ; 14(4): 341-353, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30688033

RESUMO

Distribution area and taxonomic borders within the species complex Spermophilus erythrogenys sensu lato remain questionable. Early evidence suggests that red-cheeked ground squirrels of Southeast Kazakhstan are remarkably different in terms of the acoustic structure of their alarm calls from the red-cheeked ground squirrels of the Kurgan region in Russia. In this study, we analyzed the differences in the acoustic structure of the alarm call and mitochondrial DNA (complete control region, 1005-1006 bp and complete cytochrome b gene, 1140 bp) in 3 populations of red-cheeked ground squirrels (Tara, Altyn-Emel and Balkhash), all located within areas isolated by geographical barriers in Southeast Kazakhstan. We found that the alarm call variables were similar between the 3 study populations and differed by the maximum fundamental frequency (8.46 ± 0.75 kHz) from the values (5.62 ± 0.06 kHz) reported for the red-cheeked ground squirrels from the Kurgan region of Russia. Variation in mtDNA control region was only 3% and variation in cytochrome b gene was only 2.5%. Phylogenetic trees based on cytochrome b gene polymorphism of 44 individuals from the study area and adjacent territories indicated 3 clades with high (98-100%) bootstrap support: "intermedius," "brevicauda" and "iliensis"). We conclude that the 3 study populations in Southeast Kazakhstan belong to the clade intermedius and suggest a taxonomical revision of the species complex Spermophilus erythrogenys sensu lato, including analyses of nuclear DNA and alarm calls for populations of the brevicauda and iliensis clades.


Assuntos
Distribuição Animal , Filogenia , Sciuridae/genética , Sciuridae/fisiologia , Vocalização Animal/fisiologia , Animais , DNA , Polimorfismo Genético , Especificidade da Espécie
13.
BMC Res Notes ; 11(1): 737, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333068

RESUMO

OBJECTIVES: Studying animal vocal aging has potential implication in the field of animal welfare and for modeling human voice aging. The objective was to examine, using a repeated measures approach, the between-year changes of weight, social discomfort score (bites of other hinds on hind pelt), body condition score (fat reserves) and acoustic variables of the nasal (closed-mouth) and the oral (open-mouth) contact calls produced by farmed red deer hinds (Cervus elaphus) toward their young. RESULTS: Repeated measures ANOVA revealed that with an increase of hind age for 1 year, the acoustic variables of their nasal contact calls (the beginning and maximum fundamental frequencies, the depth of frequency modulation and the peak frequency) decreased, whereas in their oral contact calls only the end fundamental frequency decreased. Duration and power quartiles did not change in any call type. Body weight and body condition score increased between years, whereas discomfort score decreased. Results of this study revealed directly the short-term effects of aging on the acoustics of the nasal contact calls in the same hinds. This study also confirmed that elevated emotional arousal during emission of the oral contact masks the effects of aging on vocalization in female red deer.


Assuntos
Envelhecimento/fisiologia , Cervos/fisiologia , Vocalização Animal/fisiologia , Acústica , Fatores Etários , Animais , Feminino
14.
Naturwissenschaften ; 105(7-8): 40, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892847

RESUMO

Non-hibernating pikas collect winter food reserves and store them in hay piles. Individualization of alarm calls might allow discrimination between colony members and conspecifics trying to steal food items from a colony pile. We investigated vocal posture, vocal tract length, and individual acoustic variation of alarm calls, emitted by wild-living Altai pikas Ochotona alpina toward a researcher. Recording started when a pika started calling and lasted as long as possible. The alarm call series of 442 individual callers from different colonies consisted of discrete short (0.073-0.157 s), high-frequency (7.31-15.46 kHz), and frequency-modulated calls separated by irregular intervals. Analysis of 442 discrete calls, the second of each series, revealed that 44.34% calls lacked nonlinear phenomena, in 7.02% nonlinear phenomena covered less than half of call duration, and in 48.64% nonlinear phenomena covered more than half of call duration. Peak frequencies varied among individuals but always fitted one of three maxima corresponding to the vocal tract resonance frequencies (formants) calculated for an estimated 45-mm oral vocal tract. Discriminant analysis using variables of 8 calls per series of 36 different callers, each from a different colony, correctly assigned over 90% of the calls to individuals. Consequently, Altai pika alarm calls are individualistic and nonlinear phenomena might further increase this acoustic individualization. Additionally, video analysis revealed a call-synchronous, very fast (0.13-0.23 s) folding, depression, and subsequent re-expansion of the pinna confirming an earlier report of this behavior that apparently contributes to protecting the hearing apparatus from damage by the self-generated high-intensity alarm calls.


Assuntos
Lagomorpha/fisiologia , Vocalização Animal , Acústica , Animais , Orelha/fisiologia , Gravação em Vídeo
15.
PLoS One ; 12(12): e0189261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261697

RESUMO

Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13-126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strains tested, 78 grew under 36 Gy/h. Importantly, we demonstrate that CIR resistance can depend on cell concentration and that certain resistant microbial cells protect their neighbors (not only conspecifics, but even radiosensitive species from a different phylum), from high-level CIR. We apply a mechanistically-motivated mathematical model of CIR effects, based on accumulation/removal kinetics of reactive oxygen species (ROS) and antioxidants, in bacteria (3 Escherichia coli strains and Deinococcus radiodurans) and in fungi (Candida parapsilosis, Kazachstania exigua, Pichia kudriavzevii, Rhodotorula lysinophila, Saccharomyces cerevisiae, and Trichosporon mucoides). We also show that correlations between responses to CIR and acute ionizing radiation (AIR) among studied microorganisms are weak. For example, in D. radiodurans, the best molecular correlate for CIR resistance is the antioxidant enzyme catalase, which is dispensable for AIR resistance; and numerous CIR-resistant fungi are not AIR-resistant. Our experimental findings and quantitative modeling thus demonstrate the importance of investigating CIR responses directly, rather than extrapolating from AIR. Protection of radiosensitive cell-types by radioresistant ones under high-level CIR is a potentially important new tool for bioremediation of radioactive sites and development of CIR-resistant microbiota as radioprotectors.


Assuntos
Bactérias/efeitos da radiação , Radiação Ionizante , Leveduras/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Relação Dose-Resposta à Radiação , Humanos , Leveduras/crescimento & desenvolvimento
16.
Proc Natl Acad Sci U S A ; 114(44): E9253-E9260, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29042516

RESUMO

Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.


Assuntos
Antioxidantes/metabolismo , Manganês/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Deinococcus/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Raios gama , Humanos , Células Jurkat , Radiação Ionizante , Superóxido Dismutase/metabolismo
17.
Stand Genomic Sci ; 12: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775794

RESUMO

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

18.
Behav Processes ; 138: 73-81, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28219730

RESUMO

Ground squirrels emit species-specific alarm calls that, among other characteristics, differ by the number of elements. Unlike some species that produce single-element calls, e.g., the Speckled ground squirrel (Spermophilus suslicus), individual European ground squirrels (S. citellus) frequently emit binary-element calls in addition to single-element calls. We tested the hypothesis that the time stability of individuality encoded in alarm calls might be better retained by complicating their acoustic structure by adding extra elements. In a semi-captive colony of individually marked European ground squirrels, we repeatedly recorded alarm calls that were produced towards a human by 12 adult (2 males and 10 females) live-trapped animals. Repeated recordings occurred within time spans of a few hours, 2days and 1year from the first recording. Our results showed that individual calls were highly similar within recordings, but less similar between recordings separated by time spans. Individual differences were best retained when we used nine acoustic variables from both elements. The differences were worse when we used nine variables from only the first element and worst when we used nine variables from only the second element. These results supported the caller reliability hypothesis for species that produce multiple-note alarms, e.g., the Richardson's ground squirrel (S. richardsonii).


Assuntos
Individualidade , Sciuridae/psicologia , Vocalização Animal , Acústica , Animais , Feminino , Masculino , Fatores de Tempo
19.
Front Microbiol ; 8: 2528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375494

RESUMO

Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans. However, the use of Deinococcus spp. and other bacteria is limited by their sensitivity to low pH. We report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites.

20.
PLoS One ; 11(8): e0160575, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500529

RESUMO

The radioprotective capacity of a rationally-designed Mn2+-decapeptide complex (MDP), based on Mn antioxidants in the bacterium Deinococcus radiodurans, was investigated in a mouse model of radiation injury. MDP was previously reported to be extraordinarily radioprotective of proteins in the setting of vaccine development. The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR). We show that the peptides accumulated in Jurkat T-cells and protected them from 100 Gy. MDP preserved the activity of T4 DNA ligase exposed to 60,000 Gy. In vivo, MDP was nontoxic and protected B6D2F1/J (female) mice from acute radiation syndrome. All irradiated mice treated with MDP survived exposure to 9.5 Gy (LD70/30) in comparison to the untreated mice, which displayed 63% lethality after 30 days. Our results show that MDP provides early protection of white blood cells, and attenuates IR-induced damage to bone marrow and hematopoietic stem cells via G-CSF and GM-CSF modulation. Moreover, MDP mediated the immunomodulation of several cytokine concentrations in serum including G-CSF, GM-CSF, IL-3 and IL-10 during early recovery. Our results present the necessary prelude for future efforts towards clinical application of MDP as a promising IR countermeasure. Further investigation of MDP as a pre-exposure prophylactic and post-exposure therapeutic in radiotherapy and radiation emergencies is warranted.


Assuntos
Deinococcus/química , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Animais , Antígenos CD34/metabolismo , Antioxidantes/química , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Citocinas/sangue , DNA Ligases/metabolismo , Desenho de Fármacos , Feminino , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/efeitos da radiação , Leucopenia/tratamento farmacológico , Manganês/química , Camundongos Endogâmicos , Peptídeos/química , Lesões por Radiação/prevenção & controle , Radiação Ionizante , Protetores contra Radiação/efeitos adversos , Esplenomegalia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...